Trichoderma are responsible for its biological control potential, among them maximum rhizosphere competency and prolific production of extracellular protein and also they can degrade chitin and cellulose (Harman et al., 1996) and are also serving as the basis for effective bio control application. Furthermore they are also known to produce antibiotics and antifungal activity (Ghisalberti and Rowland). Trichoderma as saprophytic filamentous fungi that is worldwide. That is common in soil ecosystem. It has been known for many years and produced antibiotics, mycoparasitism, comparative saprophytic ability, the metabolites secretions, induction of resistance against rigidity and promotion of growth in plant. They have more biodiversity and have been broadly and versatility in nature. They have high biodiversity and have been significantly studied virtually more microorganism to examine and explored its antagonistic action against the phytopathogens. Amaresh et al., (2016) studied the survivability of Trichoderma isolates at various temperatures and pH (3, 5, 7 and 9) and reported that Tri-9 isolate had maximum growth rate upto the temperature 40°C and survived at pH 5 and 9. For Trichoderma species found more favourable temperature between 25-30°C where average growth recorded between (53-90mm diameter) (Singh and Kumar, 2009).

MATERIALS AND METHODS

This part of experiment was conducted in the Laboratory, Department of Botany, D.G.P.G College, Kanpur, to evaluate the showing of different media for growth of Trichoderma asperellum.

RESULTS AND DISCUSSION

Evaluation of the growth performance of Trichoderma species at different Solid media: The present study carried out to evaluation of the growth performance of Trichoderma asperellum at five different Solid media including Potato dextrose agar, sorghum meal agar, cazpeak dextrose agar, corn meal agar and starch agar. The Trichoderma asperellum show maximum radial growth in potato dextrose agar and minimum growth in starch agar.

Key words: Media, Trichoderma asperellum.
<table>
<thead>
<tr>
<th>CULTURE MEDIA</th>
<th>AVERAGE COLONY DIAMETER (CM)</th>
<th>FUNGAL GROWTH (CATEGORY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato dextrose agar</td>
<td>9.0</td>
<td>Excellent</td>
</tr>
<tr>
<td>Corn meal agar</td>
<td>8.44</td>
<td>Good</td>
</tr>
<tr>
<td>Cazpeak dox agar</td>
<td>7.96</td>
<td>Good</td>
</tr>
<tr>
<td>Sorghum meal agar</td>
<td>7.98</td>
<td>Good</td>
</tr>
<tr>
<td>Starch agar</td>
<td>5.53</td>
<td>Poor</td>
</tr>
</tbody>
</table>

SE = 0.592

Table 1: Average colony diameter (cm) and fungal growth (category) in different culture media.

15, 25, 35 and 45°C but they were found to be best grown at a temperature range of 25°C to 35°C. Srivastava et al., (2014) reported that the most favourable temperature for growth and sporulation of *Trichoderma asperellum* was between 25-30°C. pH also plays an important role for growth. The most favourable pH ranges between 6 and 7 in which total dry weight of mycelium varies between 1.27 and 1.38g. Maurya et al., (2017), examined the potential application value of Trichoderma isolates in culture media on different pH and favourable growth was seen at pH 5.5 and 7.5. *Trichoderma asperellum* were evaluated on five different solid media for assessing growth. The maximum radial growth was found in Potato Dextrose agar and the lowest stach agar.

REFERENCES